Interactions Stories

The Squeal on Pigs

The Squeal on Pigs

Management of feral pigs, which reproduce two to three times annually, cause millions of dollars in damage to farms and property, and carry disease, is a great challenge. The ability to understand the movement patterns of feral pigs can help state managers mitigate the destruction caused by these swine. Garrett Street, associate professor in the wildlife, fisheries and aquaculture department, is using GPS tracking devices to gain new insights into how feral pigs use the landscape. Street and his team built an enclosure with varied habitats and surveillance cameras, trapped wild pigs, and attached accelerometers and GPS collars to them to record their movements. Accelerometers combined with GPS collars provide more insight into the pigs’ movements than GPS collars alone and can help improve management practices.

2017

Understanding Deer's Flight Response to Avoid Vehicle Collision

Understanding Deer's Flight Response to Avoid Vehicle Collision

In the U.S., deer/vehicle collisions cause 1.5 million motor vehicle accidents each year, resulting in 200 fatalities and over a billion dollars in property damage. That's why an FWRC scientist, with lead collaborators from participating agencies, sought to better understand how deer respond to approaching vehicles before a collision occurs. Dr. Ray Iglay, assistant professor in the Department of Wildlife, Fisheries and Aquaculture and FWRC researcher, was part of a team that evaluated deer responses to approaching vehicles. The aim of the team was ultimately to decide how the deer responded to different threats, whether they would go across the road or away from the road. The team conducted an opportunistic experiment protocol, recording observations of deer during a six-month period on two lane roads with maximum speeds of 40 miles per hour.

The researchers studied flight initiation distance (FID) or the distance from an approaching predator at which the prey flees. The team recorded 328 vehicle approaches toward groups of an average of two deer. While the team found that proximity to the road influenced FID, deer didn't demonstrate spatial or temporal safety thresholds and FID wasn't impacted by either oncoming vehicle speed or environmental conditions. The team also found that road crossing was influenced by group size and proximity to the road. Collaborators include Dr. Morgan Pfeiffer, Dr. Bradley Blackwell, and Mr. Thomas Seamans, U.S. Department of Agriculture, Animal and Plant Health Inspection Service (APHIS); Dr. Travis Devault, Savannah River Ecology Laboratory, University of Georgia; Wildlife Services, National Wildlife Research Center, and the Ohio Field Station.

This research is funded by FWRC and U.S.D.A. Wildlife Services National Wildlife Research Center.

2022

FWRC Scientists Look to Drones to Identify Potential Flight Disruptions

FWRC Scientists Look to Drones to Identify Potential Flight Disruptions

Wildlife residing near airports can pose threats to aircraft and themselves. Dr. Ray Iglay, principal investigator and assistant professor of wildlife ecology, and his team of FWRC scientists are using small Unmanned Aircraft Systems (sUAS), commonly known as drones, to do the wildlife surveillance work at airports traditionally done by biologists. Iglay said that getting accurate counts of wildlife is difficult because they can be hidden or camouflaged. Iglay and his team worked on testing the drones at local airports and on designing software that would detect the animals, identifying both their location within the landscape and their species. This effort is part of a larger research collaboration among MSU, the Ohio Field Station of USDA/APHIS Wildlife Services National Wildlife Research Center, and the Federal Aviation Administration, or FAA.

Iglay said that the project aimed to provide a system to the FAA that will allow them to monitor wildlife using sUAS and inform mitigation efforts in aircraft-wildlife incidents.

2021